Self-Aligned Phase Separation for IBC Solar Cells using PVD Polysilicon

Erik Hoffmann¹, Geoffrey Gregory¹, Massimo Centazzo¹, Muhammad Khan¹, Nabeel Khan¹, Verena Mertens², Philip Jäger², Sarah Spätlich², Ulrike Baumann², Thorsten Dullweber²

¹EnPV GmbH, Durlacher Allee 93, 76131 Karlsruhe, Germany

²Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany

Vienna, 24.09.2024

Who we are & what we do

- EnPV develops new products & manufacturing technologies for the PV industry:
 - 90% owned by EnBW Energie Baden-Württemberg AG, i.e.
 - the third largest utility company in Germany;
 - currently a team of 5 and looking to grow;
 - R&D activities at ISFH in Hameln;
 - patent pending proprietary technology (device & manufacturing method);
 - open to partnerships.

¹ Courtesy of WSL Solar, see <u>https://www.wsl-solar.com/Product_News/2019/1217/IBC-Solar-Cell.htm</u>

Transition from TOPCon to TBC/XBC

- TBC/XBC: passivating TOPcon contacts of both polarities on IBC structures
- Efficiency gain $\Delta \eta = 0.4-0.6 \%_{abs}$ possible compared to TOPCon
- Complex structuring of the back side
- TBC/XBC often requires significantly different manufacturing line specification than TOPCon
- TBC solar cell with self-aligned poly-Si insulation: SABC solar cell
 - Requires only one patterning step of the 1st poly-Si
 - Under-etching of the 1st poly-Si
 - By Physical Vapor Deposition (PVD): directional deposition of the 2nd poly-Si
 - \rightarrow Ultrafine separation of n-type poly-Si across the under-cut
 - Natural upgrade of TOPCon, i.e. only two additional equipment required.

Kopecek et. TBC after TOPCon, PVCELLTECH2024

- Boron silicate glass (BSG) serves as etch-barrier in subsequent processing
- P-diffusion (front surface field) with PSG as etchbarrier may be beneficial due to better passivation properties: J₀ = 2 fA/cm² [1]

- Interfacial oxide and p-type poly-Si deposition on back and front side by LPCVD
- Etch-barrier deposition (e.g. SiN_x) by PECVD on back side

- Patterning of back side poly-Si by:
 - Laser ablation of etch-barrier
 - Wet chemical etching:
 - front side p-type poly-Si etching up to BSG & back side p-type poly-Si etching of patterned regions
 - 2. Etching of wafer in patterned regions creates undercut
 - 3. Cleaning: removal of BSG and etchbarrier

Anisotropic Etch

Isotropic Etch

anisotropic etch

- Simultaneously annealing of both poly-Si layers to crystallize and activate dopants.
- Single print for metallization as both emitter and BSF are covered by the same n-type poly-Si layer.

Passivating contacts

- Annealing of both poly-Si at the same temperature T = 870 °C yields:
 - BSF iV_{oc} = 735 mV
 - Emitter iV_{oc} = 730 mV
- For the cell process, we still implent two annealing steps, causing too much B in-diffusion, lowering iV_{oc} of the emitter
- Still under investigation: effect of n-type poly-Si on top p-type poly-Si
- 11 EUPVSEC, Vienna, 24.09.2024

Proof-of-Concept

- First solar cell run yields max efficiency η = 20.2 %
- Slightly different processing sequence as described above:
 - No front side diffusion
 - Single side acidic etch back
 - Wet chemical interfacial oxides
 - Annealing of p-type poly-Si after LPCVD deposition
 - Metallization with non-fire through busbar paste
- Acceptable V_{oc} = 708 mV, considering annealing of p-poly twice.
- Fill factor and J_{sc} limit efficiency. A possible reason could be bulk related issues.
- Most importantly: acceptable shunt resistance R_{sh} = 3.3 kΩ.cm² indicating promising insulation of n-type poly silicon across the trench wall.
- Lock-In-Thermography shows local shunts at emitter busbars and edges, but little shunts between oppositely doped interdigitated electrodes.

12 EUPVSEC, Vienna, 24.09.2024

Summary

- SABC solar cell: novel TBC cell concept with self-aligned separation of the passivated contacts.
- Under-etching of first poly-Si and directional deposition of second poly-Si by PVD forms an insulation across the under-cut trench wall.
- Transition from TOPCon to SABC requires little modification.
- iV_{oc} > 730 mV for p-type (LPCVD) and n-type poly-Si (PVD) for the same annealing temperature and iV_{oc} > 735 mV for ideal annealing conditions.
- Proof of concept SABC solar cell yields $\eta = 20.2$ % and with a shunt resistance $R_{sh} = 3.3 \text{ k}\Omega.\text{cm}^2$.
- Lock-in-Thermography:
- local shunts at emitter busbar, but
- no widespread shunts between indigitated electrodes / across undercut.
- We would like to thank the EnPV team and ISFH for processing and for the valuable discussions.

