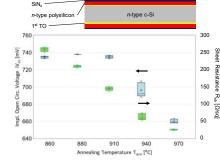

n-type polysilicon by PVD enabling self-aligned back contact solar cells

Erik Hoffmann¹, Philip Jäger², Thorsten Dullweber², Rolf Brendel², Geoffrey Gregory¹, Muhammad Khan¹, Nabeel Khan¹, Massimo Centazzo¹ ¹EnPV GmbH, Durlacher Allee, Karlsruhe, 76131, Germany

²Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany

Introduction

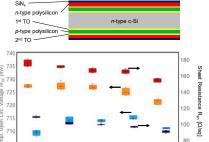
- Innovative IBC solar cell process with phosphorous doped *n*-type polysilicon by directional physical vapor deposition (PVD).
- Self aligned separation of the polysilicon contacts via shading from PVD at under-etched trenches.
- Can be integrated into an existing TOPCon manufacturing line with the addition of only two tools
- Investigation of *n*-type polysilicon and *n*-type/*p*-type polysilicon stack on planar and on laser patterned, structured surfaces.



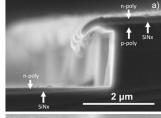
- · Additionally required processing steps (orange) compared to TOPCon:
- etch barrier (EB) deposition
- · laser patterning of EB
- tunnel oxide (TO) deposition
- n-type polysilicon PVD
- Etching of trenches simultaneous to *p*-poly wrap around etch
- n-type polysilicon covers full rear side:
- except shaded trench edge \Rightarrow insulation of emitter and base contact
- n⁺⁺/p⁺⁺- tunneling junction at emitter
- only one metallization step required to contact the *n*-type polysilicon on both passivated contacts

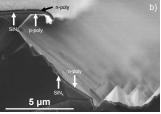
Results

n-type polysilicon:


- symmetric TO, n-type polysilicon by PVD on n-type Cz wafers after annealing, passivation with SiN_X and fast firing
- up to iV_{oc} = 738 mV after annealing at T_{ann} = 880 $^{\circ}\mathrm{C}$
- decreasing sheet resistance R_{sh} with increasing annealing temperature
- for optimum T_{ann} = 880 °C, sheet resistance yields R_{sh} = 208 Ω/sq ⇔ sufficiently low R_{sh} for the base contact of an IBC solar cell

Implied open circuit voltage iV_{OC} and sheet resistance R_{sh} of symmetric *n*-type polysilicon.


n-type/p-type polysilicon layer stack:


- including 1st and 2nd TO
- symmetric stack on n-type Cz wafer, annealing, SIN_{X} deposition and fast firing
- up to iV_{OC} = 715 mV after annealing at $\rm T_{ann}$ = 870 °C
- *p*-type polysilicon layer alone yields higher iV_{oc} = 726 mV, indicating lower passivation quality induced by the *n*-type layer
- low sheet resistance $R_{sh} = 97 \Omega/sq$ due to the two conductive layers. R_{sh} in good agreement to calculated $R_{sh,ca} = 94 \Omega/sq$ from R_{sh} of individual layers
 - SEM image of a trench cross-section after:
 - a) isotropic and b) anisotropic wetchemical etching of *p*-type polysilicon and c-Si wafer surface
 - · etch barrier removal and cleaning
 - SiN_x deposition (to enhance contrast between silicon layers)
 - PVD of *n*-type polysilicon
 - annealing
- Both etchants under-cut barrier layer and p-type polysilicon
- *n*-type polysilicon layer thickness (\$ 120 nm) thins as it approaches the trench wall and even disappears

 iV_{OC} and R_{sh} of symmetric p-type/n-type polysilicon including first and second TO.

SEM images of a) isotropic and b) anisotropic etched trenches. For both the thickness of the *n*-poly silicon layer reduces as it approaches the trench wall

Conclusion

- High iV_{oc} of base contact *n*-type polysilicon layer and promising iV_{oc} of emitter *n*-type polysilicon/TO/*p*-type polysilicon stack.
- Optimum annealing temperature of both layers in the same range T_{ann} = 870 880 °C, hence, enabling co-annealing.
- Low R_{sh} of layer stack indicates low resistance across the interfacial TO between polysilicon layers and allows further optimization of doping concentration and thickness of each layer.
- Wet-chemical etching of *p*-type polysilicon and c-Si wafer surface after laser patterning of SiN_x etch barrier under-cuts both etch barrier and *p*-type polysilicon.
- Under-cut shades subsequent PVD of *n*-type polysilicon at trench edge, hence separating the *n*-type polysilicon layer between base contact and emitter.
- Further proof of contact insulation and first proof of concept solar cells under development.

• low s